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Real-time operating systems 

6.1 Introduction: A real-time operating system (RTOS) is an operating system 

(OS) intended to serve real-time application requests. It must be able to process 

data as it comes in, typically without buffering delays. Processing time 

requirements (including any OS delay) are measured in tenths of seconds or 

shorter. 

A key characteristic of an RTOS is the level of its consistency concerning the 

amount of time it takes to accept and complete an application's task; the variability 

is jitter. A hard real-time operating system has less jitter than a soft real-time 

operating system. The chief design goal is not high throughput, but rather a 

guarantee of a soft or hard performance category. An RTOS that can usually or 

generally meet a deadline is a soft real-time OS, but if it can meet a deadline 

deterministically it is a hard real-time OS.  

An RTOS has an advanced algorithm for scheduling. Scheduler flexibility enables 

a wider, computer-system orchestration of process priorities, but a real-time OS is 

more frequently dedicated to a narrow set of applications. Key factors in a real-

time OS are minimal interrupt latency and minimal thread switching latency; a 

real-time OS is valued more for how quickly or how predictably it can respond 

than for the amount of work it can perform in a given period of time.  

6.2 Design philosophies 

The most common designs are: 

 Event-driven which switches tasks only when an event of higher priority 

needs servicing, called preemptive priority, or priority scheduling. 

 Time-sharing designs switch tasks on a regular clocked interrupt, and on 

events, called round robin. 

Time sharing designs switch tasks more often than strictly needed, but give 

smoother multitasking, giving the illusion that a process or user has sole use of a 

machine. 

Early CPU designs needed many cycles to switch tasks, during which the CPU 

could do nothing else useful. For example, with a 20 MHz 68000 processor 

(typical of the late 1980s), task switch times are roughly 20 microseconds. (In 

contrast, a 100 MHz ARM CPU (from 2008) switches in less than 3 
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microseconds.) Because of this, early OSes tried to minimize wasting CPU time by 

avoiding unnecessary task switching. 

Schedulin 

In typical designs, a task has three states: 

1. Running (executing on the CPU); 

2. Ready (ready to be executed); 

3. Blocked (waiting for an event, I/O for example). 

Most tasks are blocked or ready most of the time because generally only one task 

can run at a time per CPU. The number of items in the ready queue can vary 

greatly, depending on the number of tasks the system needs to perform and the 

type of scheduler that the system uses. On simpler non-preemptive but still 

multitasking systems, a task has to give up its time on the CPU to other tasks, 

which can cause the ready queue to have a greater number of overall tasks in the 

ready to be executed state (resource starvation). 

Usually the data structure of the ready list in the scheduler is designed to minimize 

the worst-case length of time spent in the scheduler's critical section, during which 

preemption is inhibited, and, in some cases, all interrupts are disabled. But the 

choice of data structure depends also on the maximum number of tasks that can be 

on the ready list. 

If there are never more than a few tasks on the ready list, then a doubly linked list 

of ready tasks is likely optimal. If the ready list usually contains only a few tasks 

but occasionally contains more, then the list should be sorted by priority. That way, 

finding the highest priority task to run does not require iterating through the entire 

list. Inserting a task then requires walking the ready list until reaching either the 

end of the list, or a task of lower priority than that of the task being inserted. 

Care must be taken not to inhibit preemption during this search. Longer critical 

sections should be divided into small pieces. If an interrupt occurs that makes a 

high priority task ready during the insertion of a low priority task, that high priority 

task can be inserted and run immediately before the low priority task is inserted. 

The critical response time, sometimes called the flyback time, is the time it takes to 

queue a new ready task and restore the state of the highest priority task to running. 

In a well-designed RTOS, readying a new task will take 3 to 20 instructions per 
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ready-queue entry, and restoration of the highest-priority ready task will take 5 to 

30 instructions. 

In more advanced systems, real-time tasks share computing resources with many 

non-real-time tasks, and the ready list can be arbitrarily long. In such systems, a 

scheduler ready list implemented as a linked list would be inadequate. 

Algorithms 

Some commonly used RTOS scheduling algorithms are: 

 Cooperative scheduling 

 Preemptive scheduling 

o Rate-monotonic scheduling 

o Round-robin scheduling 

o Fixed priority pre-emptive scheduling, an implementation of 

preemptive time slicing 

o Fixed-Priority Scheduling with Deferred Preemption 

o Fixed-Priority Non-preemptive Scheduling 

o Critical section preemptive scheduling 

o Static time scheduling 

 Earliest Deadline First approach 

 Stochastic digraphs with multi-threaded graph traversal 

Intertask communication and resource sharing 

Multitasking systems must manage sharing data and hardware resources among 

multiple tasks. It is usually "unsafe" for two tasks to access the same specific data 

or hardware resource simultaneously. "Unsafe" means the results are inconsistent 

or unpredictable. There are three common approaches to resolve this problem: 

Temporarily masking/disabling interrupts 

General-purpose operating systems usually do not allow user programs to mask 

(disable) interrupts, because the user program could control the CPU for as long as 

it wishes. Some modern CPUs don't allow user mode code to disable interrupts as 

such control is considered a key operating system resource. Many embedded 

systems and RTOSs, however, allow the application itself to run in kernel mode for 

greater system call efficiency and also to permit the application to have greater 

control of the operating environment without requiring OS intervention. 
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On single-processor systems, if the application runs in kernel mode and can mask 

interrupts, this method is the solution with the lowest overhead to prevent 

simultaneous access to a shared resource. While interrupts are masked and the 

current task does not make a blocking OS call, then the current task has exclusive 

use of the CPU since no other task or interrupt can take control, so the critical 

section is protected. When the task exits its critical section, it must unmask 

interrupts; pending interrupts, if any, will then execute. Temporarily masking 

interrupts should only be done when the longest path through the critical section is 

shorter than the desired maximum interrupt latency. Typically this method of 

protection is used only when the critical section is just a few instructions and 

contains no loops. This method is ideal for protecting hardware bit-mapped 

registers when the bits are controlled by different tasks. 

Binary semaphores 

When the shared resource must be reserved without blocking all other tasks (such 

as waiting for Flash memory to be written), it is better to use mechanisms also 

available on general-purpose operating systems, such as semaphores and OS-

supervised interprocess messaging. Such mechanisms involve system calls, and 

usually invoke the OS's dispatcher code on exit, so they typically take hundreds of 

CPU instructions to execute, while masking interrupts may take as few as one 

instruction on some processors. 

A binary semaphore is either locked or unlocked. When it is locked, tasks must 

wait for the semaphore to unlock. A binary semaphore is therefore equivalent to a 

mutex. Typically a task will set a timeout on its wait for a semaphore. There are 

several well-known problems with semaphore based designs such as priority 

inversion and deadlocks. 

In priority inversion a high priority task waits because a low priority task has a 

semaphore, but the lower priority task is not given CPU time to finish its work. A 

typical solution is to have the task that owns a semaphore run at (inherit) the 

priority of the highest waiting task. But this simple approach fails when there are 

multiple levels of waiting: task A waits for a binary semaphore locked by task B, 

which waits for a binary semaphore locked by task C. Handling multiple levels of 

inheritance without introducing instability in cycles is complex and problematic. 

In a deadlock, two or more tasks lock semaphores without timeouts and then wait 

forever for the other task's semaphore, creating a cyclic dependency. The simplest 

deadlock scenario occurs when two tasks alternately lock two semaphores, but in 
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the opposite order. Deadlock is prevented by careful design or by having floored 

semaphores, which pass control of a semaphore to the higher priority task on 

defined conditions. 

Message passing 

The other approach to resource sharing is for tasks to send messages in an 

organized message passing scheme. In this paradigm, the resource is managed 

directly by only one task. When another task wants to interrogate or manipulate the 

resource, it sends a message to the managing task. Although their real-time 

behavior is less crisp than semaphore systems, simple message-based systems 

avoid most protocol deadlock hazards, and are generally better-behaved than 

semaphore systems. However, problems like those of semaphores are possible. 

Priority inversion can occur when a task is working on a low-priority message and 

ignores a higher-priority message (or a message originating indirectly from a high 

priority task) in its incoming message queue. Protocol deadlocks can occur when 

two or more tasks wait for each other to send response messages. 

Interrupt handlers and the scheduler 

Since an interrupt handler blocks the highest priority task from running, and since 

real time operating systems are designed to keep thread latency to a minimum, 

interrupt handlers are typically kept as short as possible. The interrupt handler 

defers all interaction with the hardware if possible; typically all that is necessary is 

to acknowledge or disable the interrupt (so that it won't occur again when the 

interrupt handler returns) and notify a task that work needs to be done. This can be 

done by unblocking a driver task through releasing a semaphore, setting a flag or 

sending a message. A scheduler often provides the ability to unblock a task from 

interrupt handler context. 

An OS maintains catalogues of objects it manages such as threads, mutexes, 

memory, and so on. Updates to this catalogue must be strictly controlled. For this 

reason it can be problematic when an interrupt handler calls an OS function while 

the application is in the act of also doing so. The OS function called from an 

interrupt handler could find the object database to be in an inconsistent state 

because of the application's update. There are two major approaches to deal with 

this problem: the unified architecture and the segmented architecture. RTOSs 

implementing the unified architecture solve the problem by simply disabling 

interrupts while the internal catalogue is updated. The downside of this is that 

interrupt latency increases, potentially losing interrupts. The segmented 
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architecture does not make direct OS calls but delegates the OS related work to a 

separate handler. This handler runs at a higher priority than any thread but lower 

than the interrupt handlers. The advantage of this architecture is that it adds very 

few cycles to interrupt latency. As a result, OSes which implement the segmented 

architecture are more predictable and can deal with higher interrupt rates compared 

to the unified architecture. 

Memory allocation[edit] 

Memory allocation is more critical in a real-time operating system than in other 

operating systems. 

First, for stability there cannot be memory leaks (memory that is allocated, then 

unused but never freed). The device should work indefinitely, without ever a need 

for a reboot. For this reason, dynamic memory allocation is frowned upon. 

Whenever possible, allocation of all required memory is specified statically at 

compile time. 

Another reason to avoid dynamic memory allocation is memory fragmentation. 

With frequent allocation and releasing of small chunks of memory, a situation may 

occur when the memory is divided into several sections, in which case the RTOS 

can not allocate a large continuous block of memory, although there is enough free 

memory. Secondly, speed of allocation is important. A standard memory allocation 

scheme scans a linked list of indeterminate length to find a suitable free memory 

block, which is unacceptable in an RTOS since memory allocation has to occur 

within a certain amount of time. 

Because mechanical disks have much longer and more unpredictable response 

times, swapping to disk files is not used for the same reasons as RAM allocation 

discussed above. 

The simple fixed-size-blocks algorithm works quite well for simple embedded 

systems because of its low overhead. 

Examples 

A common example of an RTOS is an HDTV receiver and display. It needs to read 

a digital signal, decode it and display it as the data comes in. Any delay would be 

noticeable as jerky or pixelated video and/or garbled audio. 

Some of the best known, most widely deployed, real-time operating systems are 
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 LynxOS 

 OSE 

 QNX 

 RTLinux 

 VxWorks 

 Windows CE 

 Free RTOS 

 

http://en.wikipedia.org/wiki/LynxOS
http://en.wikipedia.org/wiki/Operating_System_Embedded
http://en.wikipedia.org/wiki/QNX
http://en.wikipedia.org/wiki/RTLinux
http://en.wikipedia.org/wiki/VxWorks
http://en.wikipedia.org/wiki/Windows_CE
http://en.wikipedia.org/wiki/FreeRTOS

